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Abstract

A type system is given that eliminates two kinds of

covert �ows in an imperative programming language�

The �rst kind arises from nontermination and the other

from partial operations that can raise exceptions� The

key idea is to limit the source of nontermination in

the language to constructs with minimum typings� and

to evaluate partial operations within expressions of try
commands which also have minimum typings� A mu�

tual progress theorem is proved that basically states that

no two executions of a well�typed program can be distin�

guished on the basis of nontermination versus abnormal

termination due to a partial operation� The proof uses

a new style of programming language semantics which

we call a natural transition semantics�

�� Introduction

In ���� we gave a type system for secure information
�ow in a core imperative language� The type system is
composed of a set of types and typing rules for deducing
the types of expressions and commands� Types corre�
spond to partially�ordered security classes like low 	L

and high 	H
� where L � H� The ordering is the basis
for a subtype relation which allows upward information
�ows� We proved a form of noninterference for the type
system� However� the system does not address covert
�ows in programs that arise from nontermination and
partial operations�

To illustrate these kinds of �ows� we give part of the
thread bodies of two Java applets that merely prompt

yThis material is based upon activities supported by DARPA

under contract BEA ������� and by the National Science Foun�

dation under grant CCR��������	 Appears in Proc	 �
th IEEE

Computer Security Foundations Workshop� Rockport MA� June

����	

a client for a password via a text �eld� The �rst applet
creates an inspector thread for each character in the
password� Part of the inspector thread body is given
in Figure �� It loops inde�nitely when it discovers the

while 	p�charAt	i
  �a�

�

ps�println	i� � not a�
�
while 	p�charAt	i
  �b�


�
ps�println	i� � not b�
�

Figure �� Covert Flow from Nontermination

character stored at position i� Until then� it records the
characters it has examined by opening a socket connec�
tion back to another port on the server from which the
applet originated� This connection is permitted under
the current �sandbox� model of Java security� A sim�
ilar inspector thread body can be designed to reveal
a password using a partial operation� Part of such a
body is given in Figure �� It uses division and fails to

if 	��	p�charAt	i
 � �a�
  �

�

ps�println	i� � not a�
�
if 	��	p�charAt	i
 � �b�
  �


�
ps�println	i� � not b�
�

Figure �� Covert Flow from a Partial Operation

catch the arithmetic exception� The thread bodies of
the preceding examples are well typed in our original
secure��ow type system�

�
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We show how these kinds of covert �ows can be han�
dled with just a simplemodi�cation to our original type
system based on the notion of a minimum type� We say
that a type � is minimum if � � � � for every type � ��
To handle the covert �ow arising from nontermination�
we merely change the typing rule for while e do c to
require that e have minimum type� Similarly� we in�
troduce a try command for each partial operation and
type the command minimally� Now� the variable c� in
the examples above� would not have minimum type� so
the thread bodies would not be well typed since neither
could be typed minimally�

The new typing rules allow us to prove theorems
about covert �ows� Our �rst covert��ow theorem estab�
lishes the property of termination agreement for well�
typed programs� It is proved with respect to a natural�
or �big�step�� semantics� Termination agreement is a
somewhat weaker statement about covert �ow than we
desire� This will lead us to a second theorem that es�
tablishes a stronger property for well�typed programs�
namely mutual progress�

To prove mutual progress� we need a transitional�
or �small�step�� style of semantics in order to make
statements about partial executions� We use a form of
transition semantics for this purpose which we call a
natural transition semantics 	NTS
 ���� It is derivable
directly from our natural semantics�

Soundness and completeness of the NTS� with re�
spect to the natural semantics� allows us to switch from
one semantic style to the other where appropriate� The
proof of mutual progress� for instance� depends on ter�
mination agreement which can be proved more easily in
the natural semantics than in the NTS since a natural
semantics is well suited for reasoning about complete
evaluation derivations� So we jump out of the progress
proof� by NTS soundness� to get termination agree�
ment� which is proved in the natural semantics� and
then re�enter� by NTS completeness� to carry out the
progress proof�

Finally� we consider a more restrictive type system
that also requires conditionals to be typed minimally�
Then we get an even stronger covert��ow result that
basically rules out covert timing channels in programs�
That is� no two executions of a well�typed program can
be distinguished by timing di�erences�

�� The Type System

The core language we consider consists of phrases�
each of which is either an expression or a command�
We let metavariable p range over phrases� e over ex�

pressions� and c over commands�

p �� e j c

e �� x j l j n j e� e� j e � e�

j e  e� j e � e�

c �� e � e� j c� c�

j if e then c else c�

j while e do c
j letvar x � e in c
j try x  e � e� in c

Metavariable x ranges over identi�ers� l over locations�
and n over integer literals� Integers are the only val�
ues� We use � for false and � for true� and assume
that locations are well ordered� All program I�O is
done through free locations in a program� The core
language includes a try command for one partial oper�
ation� namely� integer division� The scope of x in a try
command is c� Other partial operations can be intro�
duced in the same fashion� We want to consider only
those programming constructs that are fundamental to
a treatment of covert �ows in an imperative language�
For this reason� procedures and an assortment of other
language features� such as arrays� are not included�

Notice that try commands do not have catch
clauses for exception handling� A command like

try x  e � e� in c catch c�

introduces an implicit �ow from e and e� to c� that
can be handled with a typing rule like those for any
guarded commands� Here� we focus on the case where
exceptions are not caught and therefore do not consider
try�catch commands�

As in our earlier type system� the types of the core
language are strati�ed�

� �� s
� �� � j � var j � cmd

Metavariable s ranges over security classes� which we
assume are partially ordered by �� Type � var is the
type of a variable and � cmd is the type of a command�

The typing rules for the core imperative language
are given in Figure �� They form a deductive proof sys�
tem for assigning types to expressions and commands�
They are given in a syntax�directed form and are equiv�
alent to a more �exible system where coercions can be
applied more freely� Typing rules for some expressions
are omitted since they are similar to rule 	arith
�

Typing judgements have the form

�� � � p � �

where � is a location typing and � is an identi�er typ�

ing � The judgement means that phrase p has type ��

�



	int
 �� � � n � �

	var
 �� � � x � � var �	x
  � var

	varloc
 �� � � l � � var �	l
  �

	arith
 �� � � e � �	
�� � � e� � �
�� � � e� e� � �

	r�val
 �� � � e � � var 	
� � � �

�� � � e � � �

	assign
 �� � � e � � var 	
�� � � e� � �	
� � � �
�� � � e � e� � � � cmd

	compose
 �� � � c � � cmd 	
�� � � c� � � cmd

�� � � c� c� � � cmd

	if
 �� � � e � �	
�� � � c � � cmd 	
�� � � c� � � cmd 	
� � � �

�� � � if e then c else c� � � � cmd

	try
 �� � � e � �	
�� � � e� � �	
�� ��x � � � � c � � cmd 	
� is minimum
�� � � try x  e� e� in c � � cmd

	while
 �� � � e � �	
�� � � c � � cmd 	
� is minimum
�� � � while e do c � � cmd

	letvar
 �� � � e � �	
�� ��x � � var � � c � � � cmd

�� � � letvar x � e in c � � � cmd

Figure �� Typing Rules for Eliminating Covert Flows

�



assuming � prescribes types for locations in p and �
prescribes types for any free identi�ers in p� An identi�
�er typing is a �nite function mapping identi�ers to �
types� �	x
 is the � type assigned to x by � and ��x � ��
assigns type � to x and to variable x� � x� type �	x�
�
If � is dropped from a judgement� as in � � p � �� then
it is assumed to be empty� A location typing is also a
�nite function� but it maps locations to � types� The
notational conventions for location typings are similar�

One can understand the intuition behind our type
system as follows� in a guarded command like
while e do c� whenever c is executed� it is known that
e was true� Hence� if e � H� then c must not assign
to any variables of class L� for such assignments would
constitute an illegal downward �ow� The typing rule
therefore requires that c in this case have type H cmd �
which means that it only assigns to variables of class H�
However� assigning to variables is not the only way for
a command to transmit information�a command can
also transmit information by failing to terminate or by
aborting� Such failed executions transmit information
	covertly
 to an outside observer of the program�s ex�
ecution� who must be regarded as L� To prevent such
downward covert �ows� we require that the sources of
failed executions 	i�e� the guard of a while loop and
the denominator of a division in a try command
 have
minimum type�� The new restrictions on while and
try ensure that executing a command of type H cmd

does not transmit covert information to an outside ob�
server� because the command is guaranteed to termi�
nate successfully�

Of course� this does not rule out timing channels�
which use program execution time to transmit infor�
mation to the outside observer� In our �nal covert�
�ow theorem in Section �� we consider eliminating tim�
ing channels by also requiring the guard of conditional
commands to have minimum type� But this may make
the type system too restrictive to be practical� More
experience is needed to be sure�

�� Our First Covert�Flow Theorem

Our �rst covert��ow theorem is expressed with re�
spect to a natural semantics for closed phrases in the
core language� A closed phrase is evaluated relative to
a memory 
� which is a �nite function from locations
to values� The contents of a location l � dom	

 is
the value 
	l
� and we write 
�l � n� for the memory
that assigns value n to location l� and value 
	l�
 to a
location l� � l� 
�l � n� is an update of 
 if l � dom	


and an extension of 
 otherwise�

�For simplicity� we also require the numerator of a division to

have minimum type	 This restriction can be relaxed	

The evaluation rules are given in Figure �� They
allow us to derive judgements of the form 
 � e � n
for expressions and 
 � c � 
� for commands� Eval�
uating a closed expression e in a memory 
 results in
an integer n� Expressions are pure in that they do
not alter memory when evaluated� Evaluating a closed
command c in a memory 
 results in a new memory

�� Commands do not yield values�

We write �e�x�c to denote the substitution of e for
all free occurrences of x in c� and let 
� l be memory 

with location l deleted from its domain� Note the use
of substitution in rules 	div
 and 	bindvar
� It allows
us to avoid using environments in the semantics�

���� Termination Agreement

Now we can state our �rst covert��ow theorem�

Theorem ��� �Termination Agreement� Suppose

	a
 � � c � ��

	b
 
 � c� 
��

	c
 � is a memory such that dom	

  dom	�
 
dom	�
� and

	d
 �	l
  
	l
 for all l such that �	l
 � � �

Then there is a memory �� such that � � c � �� and

��	l
  
�	l
 for all l such that �	l
 � � �

An alternative statement of the theorem is if a com�
mand c is well typed� and 
 and � are memories such
that 	c
 and 	d
 are true� then either

�� c fails to terminate successfully under 
 and �� or

�� c terminates successfully under 
 and � and the
resulting memories agree on all locations whose
types are bounded by � �

The theorem departs from the noninterference theorem
of ��� in that it does not require c to terminate success�
fully under both 
 and �� There is a hypothesis about
the successful termination of c under 
 only� With the
remaining hypotheses� it is enough to ensure that c also
terminates successfully under ��

Before proving the theorem� we need a number of
lemmas� The �rst four lemmas are taken from our ear�
lier work ���� They can be proved for the typing rules
in Figure � as well�

Lemma ��� �Simple Security� If � � e � � � then

for every l in e� �	l
 � � �

�



	val
 
 � n� n

	contents
 
 � l � 
	l
 l � dom	



	add
 
 � e� n	 
 � e� � n�


 � e � e� � n� n�

	update
 
 � e� n

 � l � e� 
�l � n�

l � dom	



	sequence
 
 � c� 
�	 
� � c� � 
��


 � c� c� � 
��

	branch
 
 � e� n	 	n nonzero


 � c� 
�


 � if e then c else c� � 
�


 � e� �	

 � c� � 
�


 � if e then c else c� � 
�

	div
 
 � e� n	

 � e� � n�	 	n� nonzero


 � �	n� n�
�x�c� 
�


 � try x  e� e� in c� 
�

	loop
 
 � e� �

 � while e do c� 



 � e� n	 	n nonzero


 � c� 
�	

� � while e do c� 
��


 � while e do c� 
��

	bindvar
 
 � e� n	
l is the least location not in dom	

	

�l � n� � �l�x�c� 
�


 � letvar x � e in c� 
� � l

Figure �� Core Language Natural Semantics

�



Lemma ��� �Con	nement� If �� � � c � � cmd�

then for every l assigned to in c� �	l
 	 � �

Lemma ��
 �Expression Substitution� If �� ��x �
� � � p � �� then �� � � �n�x�p � �� and if �� � � l � � and

�� ��x � �� � p � ��� then �� � � �l�x�p � ���

Lemma ��� If 
 � c� 
�� then dom	

  dom	
�
�

We introduce the following lemmas� each of which
can be proved by induction on phrase structure�

Lemma ��� �Determinism� Suppose �	l
  
	l
�
for every l in e� 
 � e � n� and � � e � n�� Then

n  n��

Lemma �� Suppose � � e � � and 
 is a memory

such that dom	

  dom	�
� Then there is an integer

n such that 
 � e� n�

Lemma ��� If �� � � c � � cmd and c contains an

occurrence of while or try� then � is minimum�

Lemma ��� Suppose � � c � � cmd and c does not

contain an instance of while or try� and 
 is a mem�

ory such that dom	

  dom	�
� Then there is a mem�

ory 
� such that 
 � c� 
��

Notice the purely syntactic hypotheses under which
termination is guaranteed in Lemma ���� Limiting par�
tial recursion to typed commands in a language 	e�g�
while or letrec
 makes it easier to get a sound and
practical type system to control covert �ows� Some
programming language features make it much harder
to achieve such a system� For example� some people
have proposed extending Java with higher�order func�
tions� In the context of an imperative language� such
as Java� higher�order functions make recursion possible
through circularity in memory� one can bind a variable
to a function containing a free occurrence of that vari�
able ���� Such an extension makes it harder for the
type system to be aware of potentially nonterminating
programs� and yet be �exible�

Typing the while and try commands minimally
prevents them from taking di�erent execution paths
under two memories that agree on locations with min�
imum type� A conditional� however� is still free to take
di�erent execution paths under two such memories�

The proof of the termination agreement theorem re�
sembles the proof of noninterference in ���� It proceeds
by induction on the structure of 
 � c � 
�� We give
the proof for one of the more interesting cases� namely�
evaluation rule 	branch
� The remaining evaluation
rules are treated similarly�

	branch
� Suppose 
 � if e then c else c� � 
�

and the typing derivation ends with an application of
rule 	if
�

� � e � � �	
� � c � � � cmd 	
� � c� � � � cmd 	
� �� � � �

� � if e then c else c� � � �� cmd

There are two cases�

�� � � � � � Then suppose the evaluation under 
 ends
with the second rule for 	branch
�


 � e� �

 � c� � 
�


 � if e then c else c� � 
�

By the simple security lemma� �	l
 � � � for every l
in e and so �	l
 � � for every l in e� By hypothesis
	d
 then� �	l
  
	l
 for every l in e� and thus
� � e � � by Lemmas ��� and ���� By induction
there is a memory �� such that � � c� � �� and
��	l
  
�	l
 for all l such that �	l
 � � � Then
� � if e then c else c� � �� by the second rule
for 	branch
� Evaluation under 
 ending with
the �rst rule for 	branch
 is handled similarly�

�� � � �� � � Then � � is not minimum� and thus by
Lemma���� neither c nor c� contains an occurrence
of while or try� So there is a memory �� such
that � � if e then c else c� � �� by Lemma ����
By the Con�nement Lemma� �	l
 	 � � for every l
assigned to in c or c�� Thus for every l assigned to
in c or c�� �	l
 �� � since otherwise � � � � � So if
l � dom	�
 and �	l
 � � � then l is not assigned to
in c or c�� So 
�	l
  
	l
 and ��	l
  �	l
 for all l
such that �	l
 � � � and we�re done by 	d
�

�� Our Second Covert�Flow Theorem

Termination agreement is still a somewhat weaker
statement than we want about what the type sys�
tem actually guarantees in terms of protection against
covert �ows� It says that if c does not terminate suc�
cessfully under one memory then it doesn�t terminate
successfully under the other memory either� So the two
executions cannot be distinguished by one of them ter�
minating successfully and the other failing to do so�
But what about distinguishing nontermination from
abnormal termination� The theorem does not rule out
the possibility that c fails to terminate under one mem�
ory and gets stuck 	aborts
 under the other�

�



For example� suppose location l ranges over � and �
and that l � dom	

 and l � dom	�
� Now if 
 and �
agree on all locations of minimum type� then

try z  �� l in
while 	l � �
 do �

may get stuck under 
 yet fail to terminate under � if
l does not have minimum type� These two executions
can be distinguished� What we want to show yet is
that if a command c is well typed and it fails to ter�
minate successfully in some way under 
� then it also
fails to terminate successfully in the same way under
�� Stated in another way� execution of c under � makes
progress i� its execution under 
 does� This brings us
to our second covert��ow theorem� the mutual progress

theorem� However� before we can state and prove the
theorem� we need another form of semantics�

A natural semantics allows us to state properties
about successful or complete program executions� not
partial ones� So it is not suited for proving properties
about intermediate steps of a computation like progress
theorems� For this� we use a new form of semantics
which we call a natural transition semantics 	NTS
 be�
cause it is derived directly from the natural semantics
���� Unlike the treatment of NTS in ���� here it is for�
mulated as a set of transition rules� These rules admit
proofs of properties about a single transition by induc�
tion on the structure of its derivation�

���� Natural Transition Semantics

A traditional transition semantics for an impera�
tive programming language de�nes transitions between
con�gurations that involve memories and terms of the
language ���� Here we de�ne transitions between par�

tial derivation trees which represent partial derivations
in the natural semantics�

Partial derivation trees are de�ned as follows� First�
we add to the complete judgments 
 � e � n and

 � c � 
�� a new kind of judgment called a pending

judgment which has the form


 � p��

where p is a phrase� Then partial derivation trees are
de�ned inductively�

�� �
 � e� n�� �
 � c� 
�� and �
 � p� �� are par�
tial derivation trees�

�� if P is a predicate� then �P � is a partial derivation
tree�

�� if T�	 � � � 	 Tn are partial derivation trees� then
�
 � e� n�	T�	 � � � 	 Tn
� �
 � c� 
��	T�	 � � � 	 Tn
�

and �
 � p� ��	T�	 � � � 	 Tn
 are partial derivation
trees�

For example� �
 � l � 
	l
�	�l � dom	

�
 is a partial
derivation tree� We say that a partial derivation is com�

plete if it has no subtree rooted at �
 � p� ��� Every
complete derivation tree is a partial derivation tree�
We let I� J � and K range over complete derivation
trees and T over partial derivation trees�

Rules of the natural transition semantics for expres�
sions and the while and try commands� are given in
Figures �� �� and �� We use m� j� and k in the rules
as indices that start at zero� Transition rules have
been omitted for the other commands since their for�
mulation from the natural semantics is similar� Let
�
� be the re�exive and transitive closure of �
�

that is� T
�
�
 T � for any T � T

k��
�
 T � if there exists

T �� such that T
k
�
 T �� and T �� �
 T �� and T �
� T �

if T
k
�
 T � for some k 	 ��

The transition rules also include a rule
	congruence
 which allows execution of compound
phrases�

T �
 T �

�
 � p� ��	J�	 � � � 	 Jn	 T 
 �

�
 � p� ��	J�	 � � � 	 Jn	 T �


It allows the semantics to �scale up��

Lemma 
�� Suppose that T and T � are partial deriva�

tion trees� n 	 �� and k 	 �� Then T
k
�
 T � i�

�
 � p� ��	J�	 � � � 	 Jn	 T 

k
�


�
 � p� ��	J�	 � � � 	 Jn	 T �


Proof� Both directions can be proved by induction on
k� using rule 	congruence
� The 	if
 direction re�
quires observing that if T �
� T � then the number of
children of the root of T � is at least that of the root of
T � and if

T �
� �
 � p� ��	T�	 � � � 	 Tm


for m 	 �� then T is rooted at �
 � p� ���

It should be noted that controlling the lifetime of
locations in a traditional transition semantics is tricky
since one is limited to transitions between con�gura�
tions involving language terms� But with transitions
between partial derivation trees� we can exploit di�er�
ent tree structure and avoid introducing extra infor�
mation into con�gurations like the number of �live�
locations ���� The transition rule that allocates a loca�
tion for an instance of letvar is a transition from a tree

�



	t�val
 �
 � n� �� �
 �
 � n� n�

	t�contents
 l � dom	


�
 � l� �� �
 �
 � l� 
	l
�	�l � dom	

�


	t�add
 �
 � e � e� � �� �
 �
 � e� e� � ��	�
 � e� ��


	�
 �
 � e� e� � ��	�
 � e� n�	J�	 � � � 	 Jk

 �

�
 � e� e� � ��	

�
 � e� n�	J�	 � � � 	 Jk
	
�
 � e� � ��



	�
 �
 � e� e� � ��	�
 � e� n�	J�	 � � � 	 Jk
	
�
 � e� � n��	K�	 � � � 	Km


 �


�
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�
 � e� n�	J�	 � � � 	 Jk
	
�
 � e� � n��	K�	 � � � 	Km




Figure �� Natural Transition Semantics for Expressions

whose root has exactly one child to one whose root has
exactly three children� This di�erent tree structure can
be exploited in the rules to specify in a more natural
way when locations should be deallocated�

We say that a partial derivation tree T is sound if
for every node in T of the form �� � c� ���� we have
� � c� ��� for every node of the form �� � e� n�� we
have � � e� n� and for every node of the form �P �� P
is true�

Lemma 
�� If T and T � are partial derivation trees

such that T is sound and T �
 T �� then T � is sound�

Proof� Induction on the structure of the derivation of
T �
 T ��

By an easy induction on the number of transitions�
we have that if T �
� T � and T is sound� then so is
T �� This leads to the following corollary�

Proposition 
�� �NTS Soundness� If �
 � e� ��
�
� �
 � e� n�	J�	 � � � 	 Jm
 then 
 � e� n� Further�
if we have �
 � c� �� �
� �
 � c� 
��	J�	 � � � 	 Jm
�
then 
 � c� 
��

Completeness of the transition semantics is given by

Proposition 
�
 �NTS Completeness� Suppose

that 
 � e � n and that the judgment has a complete

derivation tree J � Then �
 � e� �� �
� J � Further�

if 
 � c� 
� and this judgment has a complete deriva�

tion tree J � then �
 � c� �� �
� J �

Proof� Induction on the structure of the derivation of

 � e� n and of 
 � c� 
�� using Lemma ����

���� Mutual Progress

Next we establish the mutual progress property for
the type system�

Theorem 
�� �Mutual Progress� Suppose

	a
 � � c � ��

	b
 � and 
 are memories such that dom	

 
dom	�
  dom	�
�

	c
 �	l
  
	l
 for all l such that �	l
 � � �

	d
 �
 � c� �� �
� T � and

	e
 T has a leaf of the form �
� � c� � �� where c� is a
try command�

Then there is a location typing �� and partial derivation

tree T � such that T � has a leaf of the form ��� � c� � ���
�� � c� �� �
� T �� � � ��� dom	
�
  dom	��
 
dom	��
� and 
�	l
  ��	l
� for all l such that ��	l
 � � �

�



	t�div
 �
 � try x  e� e� in c� �� �

�
 � try x  e� e� in c� ��	�
 � e� ��


	�
 �
 � try x  e� e� in c� ��	�
 � e� n�	K�	 � � � 	Km

 �

�
 � try x  e� e� in c� ��	

�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � ��



	�
 n� nonzero
�
 � try x  e� e� in c� ��	�
 � e� n�	K�	 � � � 	Km
	

�
 � e� � n��	J�	 � � � 	 Jk


 �


�
 � try x  e� e� in c� ��	
�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � n��	J�	 � � � 	 Jk

�n� nonzero�	
�
 � �	n� n�
�x�c� ��



	�
 �
 � try x  e� e� in c� ��	
�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � n��	J�	 � � � 	 Jk
	
�n� nonzero�	
�
 � �	n� n�
�x�c� 
��	I�	 � � � 	 Ij


 �


�
 � try x  e� e� in c� 
��	
�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � n��	J�	 � � � 	 Jk
	
�n� nonzero�	
�
 � �	n� n�
�x�c� 
��	I�	 � � � 	 Ij




Figure �� Natural Transition Semantics for try
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	t�loop
 �
 � while e do c� �� �

�
 � while e do c� ��	�
 � e� ��


	�
 �
 � while e do c� ��	�
 � e� ��	J�	 � � � 	 Jk

 �

�
 � while e do c� 
�	�
 � e� ��	J�	 � � � 	 Jk



	�
 n nonzero
�
 � while e do c� ��	�
 � e� n�	J�	 � � � 	 Jk

 �


�
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c� ��



	�
 �
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c� 
��	K�	 � � � 	Km


 �


�
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c� 
��	K�	 � � � 	Km
	
�
� � while e do c� ��



	�
 �
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c� 
��	K�	 � � � 	Kj
	
�
� � while e do c� 
���	I�	 � � � 	 Im


 �


�
 � while e do c� 
���	
�
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�n nonzero�	
�
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� � while e do c� 
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Figure 	� Natural Transition Semantics for while
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Proof� Induction on the number of transitions in
�
 � c� �� �
� T � Aside from the basis� we show only
one case� namely 	t�loop
� It is a good representative
case because it illustrates the key steps one needs in
order to prove the theorem for all other rules of the
transition semantics�

For zero transitions� we have

�
 � c� �� �
� �
 � c� ��

where c is a try command� Let ��  � and we�re done
by hypotheses 	b
 and 	c
�

Now suppose c iswhile e do c��� There are two sub�
cases to consider here� They correspond to whether the
leaf of hypothesis 	e
 arises before or after c has made a
transition according to rule 	t�loop
	�
� First we con�
sider the case when it arises before� Since commands
are not expressions� we have� by hypotheses 	d
 and
	e
� that c�� contains a try command c��

�
 � c� �� �
 �
 � c� ��	�
 � e� ��
 �
�

�
 � c� ��	J�


where J� is a complete derivation tree rooted at
�
 � e� n� and n is nonzero� and �nally that

�
 � c� ��	J�
 �

�
 � c� ��	J�	 �n nonzero�	 �
 � c�� � ��
 �
�

�
 � c� ��	J�	 �n nonzero�	 T 


where T contains a leaf of the form �
� � c� � ���
By rule 	t�loop
� we have

�� � c� �� �
 �� � c� ��	�� � e� ��


Now we have � � e � � � and dom	�
  dom	�
� so there
is an integer n� such that � � e � n�� by Lemma ����
Suppose this judgment has a complete derivation tree
J �

� rooted at �� � e� n��� By completeness of the tran�
sition semantics�

�� � e� �� �
� J �

�

At this point� we need to show that execution of c does
not proceed with a transition by rule 	t�loop
	�
 since
this rule cannot lead to a derivation tree with the de�
sired leaf�

We have � � e � � � and � � is minimum by the typing
rule 	while
� So �	l
 � � � for every l in e by the simple
security lemma� Also� � � � � since � � is minimum� So
�	l
 � � for every l in e� and thus �	l
  
	l
 for every
l in e� by hypothesis 	c
� Further� by soundness of the
transition semantics� 
 � e � n� Thus� n�  n by
Lemma ���� So n� is nonzero and we then have by rule
	t�loop
	�
 and Lemma ���� that

�� � c� ��	�� � e� ��
 �
�

�� � c� ��	J �

�	 �n
� nonzero�	 �� � c�� � ��


Now by Lemma ����

�
 � c�� � �� �
� T

and so by induction�

�� � c�� � �� �
� T �

T � has a leaf of the form ��� � c� � �� and there is
a location typing �� such that � � ��� dom	
�
 
dom	��
  dom	��
� and ��	l
  
�	l
 for all l such
that ��	l
 � � � Finally� by Lemma ��� again�

�� � c� ��	J �

�	 �n
� nonzero�	 �� � c�� � ��
 �
�

�� � c� ��	J �

�	 �n
� nonzero�	 T �


Now consider the case when the leaf arises after the
while command has made a transition according to
rule 	t�loop
	�
� Suppose that

�
 � c� �� �
�

�
 � c� ��	J�	 �n nonzero�	 J�	 �

� � c� ��
 �
�

�
 � c� ��	J�	 �n nonzero�	 J�	 T 


where J� is a complete derivation tree rooted at
�
 � e� n�� such that n is nonzero� J� is a complete
derivation tree rooted at �
 � c�� � 
��� and T has a
leaf of the form �
�� � c� � ���

By Lemma ���� � � e � n�� Suppose this judg�
ment has a complete derivation tree J �

� rooted at
�� � e� n��� We also have � � e � � � where � � is mini�
mum by typing rule 	while
� So by the simple security
lemma and hypothesis 	c
� �	l
  
	l
 for every l in e�
Thus� n�  n� by Lemma ���� and so n� is nonzero�

By the soundness of the transition semantics� we
have 
 � c�� � 
�� So by the termination agreement
theorem� there is a �� such that � � c�� � �� and
��	l
  
�	l
 for all l such that �	l
 � � � Suppose
this judgment has complete derivation tree J �

� rooted at
�� � c�� � ���� By the completeness of the transition se�
mantics� Lemma ���� and rules 	t�loop
� 	t�loop
	�

and 	t�loop
	�
� we have

�� � c� �� �
�

�� � c� ��	J �

�	 �n
� nonzero�	 J �

�	 ��
� � c� ��


Now by Lemma ����

�
� � c� �� �
� T

By Lemma���� and since dom	

  dom	�
  dom	�
�
we have dom	
�
  dom	��
  dom	�
� Thus� by in�
duction�

��� � c� �� �
� T �

T � has a leaf of the form ���� � c� � �� and there is
a location typing �� such that � � ��� dom	
��
 

��



dom	���
  dom	��
 and ���	l
  
��	l
 for all l such
that ��	l
 � � �

Finally� by Lemma ����

�� � c� ��	J �

�	 �n
� nonzero�	 J �

�	 ��
� � c� ��
 �
�

�� � c� ��	J �

�	 �n
� nonzero�	 J �

�	 T
�


and we�re done�

Notice in the proof that we have the guard of a
while command evaluating to the same value under

 and � since the command is typed minimally by rule
	while
� The proof also needs the guard of a condi�
tional to evaluate to the same value under 
 and �� yet
rule 	if
 does not require a conditional to be minimally
typed� Nevertheless� it will be minimally typed due to
hypotheses 	a
 and 	e
 of the theorem� and Lemma ����

The mutual progress theorem tells us that if exe�
cution of a command c in a memory 
 depends on
executing

try x  e � e� in c�

in some memory 
�� then c�s execution in � also de�
pends on executing the try command in some mem�
ory � �� Furthermore� we have that �� � � e� � � � for
minimum type � � since c is well typed� The theo�
rem gives us a typing �� that contains �� and hence
��� � � e� � � � The theorem also tells us that �� and

� agree on all locations in the domain of �� with min�
imum type� Thus either both executions proceed 	e�

evaluates to the same nonzero integer in 
� and ��
 or
both get stuck 	e� evaluates to zero in 
� and ��
�

�� Our Third Covert�Flow Theorem

Looking at the mutual progress theorem more
closely� if execution of a command c gets stuck under
a memory 
� then its execution also gets stuck under
any other memory � that agrees with 
 on locations of
minimum type� This says that executions of c under
memories that di�er only on locations of nonminimum
type cannot be distinguished on the basis of abnormal
termination versus nontermination� But the number of
steps c takes under 
 and � may di�er�

Consider a well�typed composition c� c� where c con�
tains a conditional� with a nonminimum guard� and
only c� contains a try command� Then although c� may
get stuck under 
 and �� more steps may be needed
to do so under one memory than under the other due
to di�erent execution paths taken by the conditional
in c� 	Remember that conditionals with nonminimum
guards can still be typed minimally by subtyping�
 As
long as conditionals are not typed minimally� we can�
not say that if execution of a well�typed command c

gets stuck after k steps under 
� then it does so after
k steps under � as well�

As our �nal covert��ow theorem� we prove a timing
agreement theorem for a more restricted type system�
The restricted system is the original type system with
rule 	if
 changed so that � is required to be minimum�
Assume� hereafter� that � now refers to the more re�
stricted system�

First we need two lemmas�

Lemma ��� If 
 and � are memories� dom	

 

dom	�
 and �
 � e� ��
k
�
 �
 � e� n�	J�	 � � � 	 Jn
�

then

�� � e� ��
k
�
 �� � e� n��	J �

�	 � � � 	 J
�

n


Proof� Straightforward induction on k� using
Lemma ����

The next lemma is a stronger form of termination
agreement 	Theorem ���
 for the more restricted type
system� It does not hold if conditionals are not mini�
mally typed�

Lemma ��� Suppose � � c � �� 
 and � are memories

such that dom	

  dom	�
  dom	�
� 
	l
  �	l
 for
all l such that �	l
 � � � and

�
 � c� ��
k
�
 �
 � c� 
��	J�	 � � � 	 Jn


Then we have �� � c� ��
k
�
 �� � c� ���	J �

�	 � � � 	 J
�

n

and ��	l
  
�	l
 for all l such that �	l
 � � �

Proof� Induction on k� using Lemmas ��� and ����

Theorem ��� �Timing Agreement� Suppose

	a
 � � p � ��

	b
 � and 
 are memories such that dom	

 
dom	�
  dom	�
�

	c
 �	l
  
	l
 for all l such that �	l
 � � �

	d
 �
 � p� ��
k
�
 T � for k 	 �� and

	e
 T has a leaf of the form �
� � p� � ���

Then there is a location typing �� and partial derivation

tree T � such that T � has a leaf of the form ��� � p� � ���

�� � p� ��
k
�
 T �� � � ��� dom	
�
  dom	��
 

dom	��
� and 
�	l
  ��	l
� for all l such that ��	l
 � � �

Proof� Induction on k� using Lemmas ��� and ����

��



class TimingChannel implements Runnable �

boolean val � false�

TimingChannel��

throws InterruptedException �

new TimeSlicer����

new Thread�this��start���

try Thread�sleep�	��

finally�

System�out�println�
val � true
��

�

public void run�� �

double x�

if �val�

for �int i � �� i  ��� i���

x � Math�exp�Math�PI� � i�

System�out�println�
val � false
��

�

public static void main�String args���

throws InterruptedException �

try new TimingChannel���

finally�

�

�

Figure 
� Timing Channel with Java Threads

Clearly timing agreement is a stronger property than
either termination agreement or mutual progress� But
the cost for this added strength is a much more restric�
tive typing rule for conditionals� Though it might be
argued the rule is impractical for writing systems soft�
ware or TCB source code� it may be the kind of rule
that should be used in writing �Web programs� like
Java Applets� The reason is that with threads� timing
di�erences become quite easy to observe from within

programs�

For example� take the Java program in Figure ��
The idea is that we want to determine the contents of
the boolean variable val by setting up two compet�
ing threads� The main thread creates another thread�
the TimingChannel thread� whose run method checks
whether val is true� doing some computation if it is and
nothing otherwise� except print a string� Notice that
the run method does not have any illegal implicit �ows
in the sense of Denning�s program certi�cation ��� ���
There is a third thread� called the TimeSlicer� which
is a daemon thread running at a higher priority� It re�
awakens every �ve milliseconds and immediately goes
back to sleep which guarantees round�robin schedul�
ing among the other two threads�� After creating the
TimingChannel thread� the main thread sleeps for two
milliseconds� If it awakens before the TimingChannel

�The timeslicer was needed because our example was devel�

oped using Solaris JDK �	
� which� unlike the JDK for Windows

NT� does not schedule threads in a round�robin fashion	

thread completes� then the �rst string output will be
val � true� otherwise it will be val � false� The
�rst string usually re�ects the variable�s contents accu�
rately� This is not a completely reliable way of getting
the contents due to thread scheduling variations� but
it works often enough�

So it seems that conditionals should also be typed
minimally� But this may not be the best way to deal
with them� After all� unlike the earlier Java examples�
threads here seem to have a critical role� Perhaps with
a proper treatment of threads� conditionals won�t need
to be typed so restrictively�

	� Conclusion

The idea of analyzing source code for covert infor�
mation �ow is not new� He and Gligor� for example�
informallydescribe analyzing TCB source code for such
�ows ���� Others have recognized the need to augment
Denning�s original secure��ow certi�cation with rules
that deal with global �ows arising from loops and pos�
sibly nonterminating programs ��� ��� But these e�orts
provide no formal speci�cation nor proof of the proper�
ties that are guaranteed to hold for programs that pass
the analyses� In contrast� we have given a rigorous ac�
count of various properties that a program has if it is
typeable in our covert��ow type system�
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